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INTRODUCTION

There is a wide range of problems in which
we need to make a decision under some sort
of uncertainty, and where we have the ability
to collect information in some way to reduce
this uncertainty. The problem is that col-
lecting information can be time consuming
and/or expensive, so we have to do this in an
intelligent way. Some examples include the
following:

• We wish to find a supplier for a compo-
nent who provides the lowest cost and
best level of service. We know the cost,
but the only way to evaluate the level of
service is to try the supplier and observe
actual delivery times.

• We need to find the best path through
New York City to respond to certain
emergencies (e.g., getting a fire truck
to city hall). To evaluate the time
required to traverse each path, we
can try each path, or we could collect
information about specific links in the
network. Which paths (or links) should
we measure?

• We are trying to find the best molec-
ular compound to produce a particular
result (curing cancer, storing energy,
conducting electricity, etc.). There are
thousands of combinations that we can
try, but each test takes a day. Which
compounds should we test?

• We would like to find the best price
to sell a product on the internet. We
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can experiment with different prices
and measure sales. How do we go about
testing different prices?

• We have a simulation model of an
operational problem (e.g., managing
takeoffs and landings at Heathrow
Airport). We have a number of control
parameters that we can adjust to
improve performance, but running
a simulation takes half a day. How
do we go about trying out different
parameters?

• We are running a stochastic search algo-
rithm to solve a specific optimization
problem. Each iteration takes several
minutes to perform a noisy function
evaluation (this might be a simulation
of the climate). How do we optimize this
function as quickly as possible?

These are just a small number of examples of
problems where we face the challenge of col-
lecting information to make better decisions.
Applications range from business decisions,
science and engineering, and simulation and
stochastic optimization.

The learning problems that we wish to
address all have three fundamental compo-
nents: a measurement decision, which deter-
mines what information we are going to
collect; the information that we obtain; and
an implementation decision which uses the
information. We are primarily interested in
sequential problems, where we can make
multiple measurements and where each mea-
surement may depend on the outcomes of
previous measurements. Our goal, then, is
to design a measurement policy which deter-
mines how these measurements are made.

Measurement problems come in two fun-
damental flavors. Off-line problems use a
sequence of measurements before making a
final implementation decision. These arise
when we have a period of time to do research
before choosing a final design. The second
flavor is online problems, where we collect
information each time we make an imple-
mentation decision. For example, we may
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want to find the best path from our new
apartment in New York City to our new job.
The only way to evaluate a path is to try it.
The implementation decision is the choice of
path to use tomorrow, but we collect infor-
mation as we try the path. Off-line problems
are often grouped under labels such as rank-
ing and selection (which generally refers to
choosing among a finite set of alternatives),
stochastic search, and simulation optimiza-
tion. Online problems are usually referred
to as bandit problems. Our presentation of
the knowledge gradient (KG) treats both off-
line and online problems in an integrated
way.

Information collection problems can be
approached from two perspectives: fre-
quentist and Bayesian. In the frequentist
approach, we form estimates about a truth
based on information drawn from a sample
(see [1–4] for excellent surveys of learning
from a frequentist perspective). In this
article, we focus on the Bayesian perspective,
where we assume that we have a prior
belief about problem parameters, along with
estimates of the level of uncertainty. The
Bayesian perspective assumes that there is
a prior distribution of possible truths, and
our goal is to design a policy that discovers
this truth as quickly as possible. The fre-
quentist perspective uses noisy observations
from an unknown truth to make statistical
statements about this truth; the Bayesian
perspective uses a prior belief and noisy mea-
surements to create a probability distribution
to describe the truth.

In this short article, we adopt a Bayesian
perspective, focusing on a concept we call
the knowledge gradient, which belongs to a
family of methods that guides the learning
process based on the marginal value of
information. The roots of this idea in the
field of decision theory belong to the seminal
paper by Howard [5] on the value of infor-
mation. We first became aware of this idea
applied as a policy for off-line ranking and
selection problems from Gupta and Miescke
[6]. A separate line of research that uses
arose in the context of optimizing unknown
functions under the general name ‘‘global
optimization,’’ with roots in the seminal
paper by Kushner [7]. When these functions

can only be measured with uncertainty, this
field has been referred to as Bayesian global
optimization, with many contributions (see
Jones et al. [8] for a good review). Our work in
this area is based on Frazier and Powell [9],
which analyzes the properties of sequential
measurement policies based on the marginal
value of a single measurement using a
Bayesian framework with variance known;
Frazier and Powell [10] provide an important
generalization to problems with correlated
beliefs (reviewed below). In parallel research,
Chick and Branke [11] derive the marginal
value of information for the important case
where the variance is unknown using the
name LL(1) (linear loss, with measurement
batches of one observation).

We provide a brief summary of different
policies for collecting information. Although
measurement policies may have a Bayesian
or frequentist foundation, it is possible (and,
we would argue, most natural) to evalu-
ate any policy by sampling a truth from a
prior distribution, and then determine how
well a policy learns this assumed truth. This
exercise then has to be repeated over many
possible truths drawn from the prior.

The essential feature that separates
learning problems from traditional stochas-
tic optimization is that we are unsure about
our uncertainty. If we make an observation,
we are willing to update the probability
distributions we use to describe uncertain
parameters. Inserting this step of updating
our beliefs after a measurement is made is
typically referred to as statistical learning.
When we actively make choices of what to
measure, taking into account our willingness
to update our beliefs, then this is optimal
learning.

This article is intended to serve as a
brief introduction to some of the important
problem classes in optimal learning. We pro-
vide a mathematical framework for formu-
lating and evaluating measurement policies.
We review a number of heuristic policies,
along with optimal policies for special prob-
lem classes. The remainder of the article
focuses on the concept of the KG algorithm,
which is a measurement policy that applies
to a wide range of applications.
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ELEMENTARY PROBLEMS

There are two elementary learning prob-
lems that provide the foundation for our
discussion. Both have a discrete set of
measurements X = (1, 2, . . . , M), where M
is an integer that is ‘‘not too large,’’ which
means that we do not have any difficulty in
enumerating the choices. The first problem is
known in the literature as the multiarmed-
bandit problem, which is an online learning
problem where we learn from the rewards
that we receive. The second is known as
the ranking and selection problem, where
we have a budget of N measurements to
evaluate each choice, after which we have to
decide which alternative appears to be best.

Multiarmed Bandit Problems

The multiarmed bandit problem is based on
the story of trying to choose the best of a
set of M slot machines (often known as one-
armed bandits). We do not know how much
we will win each time we play a particular
slot machine, but we have a distribution of
belief, which we acknowledge may be wrong.
We may think one machine has the high-
est expected reward, but we are willing to
acknowledge that we may be wrong and
another machine may also be the best. The
only way we will learn is to try machines that
do not appear to be the best. But while try-
ing these machines, we may be earning lower
rewards than we would earn by playing the
machines that we think are better. The goal
is to maximize the expected discounted sum
of rewards that balance what we earn against
what we learn (to improve future decisions).

Let μx be the true mean reward if we
choose x. We do not know μx, but assume that
we believe that it is normally distributed
with prior mean μ0

x and variance (σ 0
x )2.

For convenience, we define the precision
β0

x = 1/(σ 0
x )2. Let Wn be the reward (‘‘win-

nings’’) we receive in the nth iteration, and
let (μn, βn) be our vector of beliefs about the
means and precisions for all the choices after
n measurements. We can write μn

x = E
nμx,

where E
n is the expectation given the first

n measurements. Let Sn = (μn, βn) be our
‘‘state of knowledge’’ (often referred to as the
belief state).

We let xn be the choice we make after n
measurements, meaning that our first choice
is x0, which is based purely on the prior. We
make these measurements using a policy π ,
which is allowed to depend on the history
of observations W1, W2, . . . , Wn. Let Xπ ,n(Sn)
be the random variable representing the
decision we make, given our state Sn, and
given measurement policy π . This notation
allows our policy to depend on n; if we wish
to follow a stationary policy, we would write
it as Xπ ,n(Sn) (in a finite-horizon problem,
the policy can depend on the number of
measurements n, as well as on the belief
state Sn). Our goal is to find a measurement
policy π that solves

sup
π

Fπ = E
π

N∑
n=0

γ nμXπ ,n(Sn), (1)

where γ is a discount factor. We write the
expectation E

π as dependent on the policy
π , which reflects assumptions on how we
construct the underlying probability space.
We assume that an elementary outcome is
a sequence of decisions of what to measure
(which depend on the policy) and the results
of a particular measurement. This is not the
only way to construct the probability space,
but it is the one that is most often used in
the research community.

In the classical multiarmed bandit prob-
lem, N = ∞ and γ < 1, but the finite hori-
zon problem (possibly with γ = 1) is also of
interest.

Ranking and Selection Problems

Now imagine that we have a budget of N
measurements (or B dollars to spend on mea-
surements) after which we have to choose
the best of a set of M alternatives. In the
bandit problem, we learn as we go, incur-
ring rewards (or costs) as we proceed. In the
ranking and selection problem, we are not
concerned with how well our choices perform
during the process of collecting information.
Instead, we are only concerned with how well
our final choice performs.

Let μN
x be the posterior mean of the value

of alternative x after N measurements, which
we chose using measurement policy π . μN

x is a
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random variable whose distribution depends
on our measurement policy. The value of
using π can be written

Fπ = E max
x

[
μN

x

]
= E

πμN
xπ ,

where xπ = arg maxx μN
x is the optimal

solution when we follow measurement policy
π . The problem of finding the best policy is
then given by

sup
π∈�

Fπ .

We note that it is possible to write the objec-
tive as

sup
π

EFπ ,

in which case we assume that the mea-
surement policy is built into the objective
function. When we write the objective this
way, it means that the probability space con-
sists of all potential measurements Wn

x for
all alternatives x and all measurements n.
Alternatively, we can write the objective as

sup
π

E
πF.

Written this way, it means that we have
imbedded the policy into the probability space
(a sample outcome consists of measurement
alternatives and realizations), which means
that F does not explicitly depend on the
policy.

Notes on Objective Functions

The formulations we have given in this
section assume that we are maximizing a
reward. Equivalently, we could minimize the
expected opportunity cost (EOC). For the
ranking and selection problem, this would
be written as

EOC = E max
x

μx − Eμxπ ,

where we are measuring the value that
we could achieve if we could find the best
alternative using the true means, versus
the value of the alternative we did choose
(but again using the true means). Keep in

mind that the expectations here are over
both the distribution of truths as well as the
distribution over measurements. Minimizing
the EOC is the same as solving

sup
π

Eμxπ .

It is also possible to show that

sup
π

sup
χ

E
πμχ (x) = sup

π

E
π max

x
μN

x , (2)

where χ is the policy for choosing the best
alternative x given what we measure, which
for our problem is defined by

χ = arg max
x

μN
x .

Equation (2) states that if we use a measure-
ment policy to find the best alternative xπ and
we evaluate this choice using the true values
μx, we get the same answer if we evaluate
our choice using the estimates μN

x .

LEARNING

At the heart of any learning problem is
not only uncertainty about the value of the
choices we are making but also uncertainty
about our uncertainty. Learning problems
are easily posed in a Bayesian framework,
where we are able to capture the uncertainty
in our belief about a system. In our bandit
or ranking and selection problems, μx is
the true value of x, but we do not know
this value. Instead, we assign a probability
distribution that describes what we think μx
is for each x. Before we start collecting any
information, we might assume that our prior
distribution of belief about μx is normally
distributed with mean μ0

x and variance (σ 0
x )2.

We adopt a common convention in Bayesian
analysis and define the precision of our belief
as β0

x = 1/(σ 0
x )2. Now assume that when we

make an observation Wn
x of choice x, the

precision of this measurement is known and
given by βε . To reduce notational clutter, we
assume that this is constant across x, but
this is easily relaxed.

Assume that our current (prior) belief
about choice x is given by μn

x and βn
x , and
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that we choose to measure alternative
xn = x. We would then observe Wn+1

x , which
is unknown when we picked xn. Further
assume that our prior is normally dis-
tributed (i.e, μx ∼ N(μ0

x , 1/β0
x )), and that

Wn+1
x = μx + εn+1

x , where εn+1
x is also nor-

mally distributed with precision βε . Bayes
theorem can be used to show that our
updated mean and precision of the posterior
belief can be computed using

μn+1
x = βn

x μn
x + βεWn+1

x

βn
x + βε

, (3)

βn+1
x = βn

x + βε. (4)

We also have the property that, if our prior
belief about μ is normally distributed, then
the posterior belief is normally distributed.

MEASUREMENT POLICIES

Our central challenge is designing a policy for
collecting information. For off-line problems,
these policies guide information collection
that determines the final decision. For on-
line problems, our policy has to strike a
balance between receiving rewards (or incur-
ring costs) and collecting information that
will help future decisions.

Measurement policies can be deter-
ministic or sequential. If we are using a
deterministic policy, decisions about what to
measure are made before any measurements
are learned. Deterministic policies can be
optimal for certain types of statistical learn-
ing problems. Our interest is in sequential
problems, where the next measurement
decision is made only after learning the
value of the previous measurement.

We begin by showing that optimal mea-
surement policies can be characterized using
a simple dynamic programming formulation.
The problem is that the dynamic program
cannot be solved exactly. We then describe
a series of simple heuristic policies that are
often used in the research community.

Optimal Sequential Policies

Dynamic programming is widely used for
sequential decision problems. For our prob-
lem, we start in a (knowledge) state Sn,

then we take an action (measurement) xn,
and observe a random outcome Wn+1

xn , which
takes us to a new state according to the
transition function Sn+1 = SM(Sn, xn, Wn+1)
defined by Equations (3) and (4). Our optimal
measurement xn can, in theory, be character-
ized using Bellman’s equation

V(Sn) = max
x

(
C(Sn, x) + γ E

{
V(Sn+1)

∣∣∣ Sn
} )

.

(5)

Here, V(Sn) captures the value of being in
a particular knowledge state Sn. Using the
principle of dynamic programming, this is
given by choosing the measurement action
x that maximizes the contribution earned
(this might be a negative cost) from taking
action x, plus the value of being in the
knowledge state Sn+1 that results from this
action, given by V(Sn+1). Of course, Sn+1

is random given Sn and x, so we have to
take its expectation over the measurement
Wn+1

x for each alternative x. For off-line
problems, C(Sn, x) may be zero, since
we do not receive any value until we pick
the final design. For online problems, C(Sn, x)
would be the expected reward μn

x .
So, if Equation (5) gives us the optimal

measurement policy, why do we not just use
this solution? The reason is that we just
do not have algorithms to solve dynamic
programs when the state variable is a vector
of continuous parameters. There is, however,
a special case that can be solved optimally
without directly solving the dynamic pro-
gram, which uses the concept of Gittins
indices for multiarmed bandit problems.
After presenting this idea, we review the
most popular heuristic policies. Our presen-
tation focuses purely on sequential policies
where the choice of the nth measurement
depends on the prior and the outcomes of
W1, . . . , Wn. We then close by introducing the
KG policy and illustrate the wide range of
information collection problems that can be
addressed using this strategy.

Gittins Indices for Multiarmed Bandit Problems

In 1974, Gittins and Jones [12] found that the
multiarmed bandit problem (specifically, the
infinite horizon version of the multiarmed
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bandit problem) could be solved optimally
using an index policy computed using


(μn
x , σn

x , σε , γ ) = μn
x + 


(
0,

σn
x

σε

, 1, γ
)

σε. (6)

In this expression, 
(μn
x , σn

x , σε , γ ) is the
Gittins index for measurement x for which
the belief is μn

x and the standard deviation
is σn

x . σε = √
1/βε is the standard deviation

of the measurement and γ is the discount
factor. The Gittins index policy, as it became
known in the literature, specifies that you
measure the choice x with the highest value
of 
(μn

x , σn
x , σε , γ ). The power of this policy is

that there is one index per choice, and at no
time are we dealing with multidimensional
state vectors.

This leaves us with the challenge of com-
puting 
(μn

x , σn
x , σε , γ ). Equation (6) shows us

that we can compute the index as a function
of a simpler index 


(
0, σn

x
σε

, 1, γ
)
. This has a

close parallel with the standard normal dis-
tribution (indeed, this relationship depends
on normally distributed beliefs). While this
relationship simplifies the problem, we still
have to find 


(
0, σn

x
σε

, 1, γ
)
, which requires

the fairly difficult numerical solution of an
integral equation.

Fortunately, there have been recent
efforts to develop numerical approximations.
Brezzi and Lai [13] found that


(0, s, 1, γ ) =
√

− log γ b
(

− s2

log γ

)
, (7)

where the function b(·) has to be approx-
imated. Chick and Gans [14] improved on
the initial approximation of this function by
Brezzi and Lai [13], proposing

b(ζ ) ≈⎧⎪⎪⎨
⎪⎪⎩

ζ√
2

ζ ≤ 1
7

exp
( −0.02645(log ζ )2

+ 0.89106 log ζ − 0.4873

)
1
7 <ζ ≤100

√
ζ
√

ζ log ζ − log log ζ − log 16π ζ>100.
(8)

The Gittins index policy is specifically
designed for on-line problems, and in par-
ticular infinite horizon bandit problems.
However, the structure of the policy offers

some insights into the information-collection
process, as we see below.

Heuristic Policies

There are a number of simple policies that
can be used for collecting information. The
policies reviewed below are the most popular.
These can generally be adapted for on-line or
off-line applications.

• Pure Exploration. Pure exploration
involves picking choices at random. If
there are M choices, we might choose
xn = x with probability 1/M or use
some other exogenously driven process.
A pure exploration strategy makes
little sense in an on-line application,
but it can be useful (if not optimal)
for off-line problems, especially for
high-dimensional applications where
the measurement space X is quite large.
For off-line problems, we may use pure
exploration just to collect data to fit a
statistical model.

• Pure Exploitation. We make the deci-
sion that appears to be best, given what
we know. Stated mathematically, a pure
exploitation policy would be written as

xn = arg max
x∈X

μn
x .

Pure exploitation can be effective for
online learning where the prior infor-
mation is quite good.

• Mixed Exploration and Exploitation.
Here we explore with some proba-
bility ρ, and exploit with probability
1 − ρ. A variation is epsilon-greedy
exploration, where we explore with
probability ρn = c/n, where c is a
tunable parameter.

• Boltzmann Exploration. Here we
explore with probability

ρn
x = exp (θμn

x )∑
x′∈X

exp (θμn
x′ )

,

where θ is a tunable parameter.
θ = 0 produces pure exploration, while
as θ increases, it approaches pure
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exploitation. This policy explores in a
more intelligent way than the more
classical exploration policies.

• Interval Estimation. Interval estima-
tion is the most sophisticated of this
group of heuristics. Here, we compute
an index using

νn
x = μn

x + zασn
x . (9)

In this policy, zα is a tunable parameter,
and σn

x is the standard deviation of
our estimate μn

x . This policy strikes a
balance between the estimate μn

x (low
values are less likely to be tested),
and the uncertainty with which we
know μn

x . The policy rewards higher
levels of uncertainty, but only if μn

x is
competitive.

It is useful to compare the index pol-
icy given by interval estimation in Equation
(9) with the Gittins index policy, given in
Equation (6). Both policies compute an index
given by the current belief plus an additional
‘‘bonus’’ (often referred to as the uncertainty
bonus). How this bonus is computed is where
the two policies differ. The Gittins policy uses
a theoretically derived factor that declines to
zero as the number of observations increase.
This is multiplied by the standard deviation
σε of the measurement error. For interval
estimation, the bonus is a constant factor
(which has to be tuned) times the standard
deviation σn

x of our estimate μn
x , which then

declines with the number of observations. As
the number of times we measure an alter-
native increases, the factor 


(
0, σn

x
σε

, 1, γ
)

in
Equation (6) decreases (σε stays the same).
By contrast, with interval estimation, it is σn

x
that decreases, while zα stays the same.

Policies from Simulation Optimization

An entire body of research has developed
around the problem of choosing the best
set of parameters to guide a simulation. If
these parameters are discrete, and if we
fix the length of the simulation, this prob-
lem falls under the umbrella of ranking and
selection if we are considering a finite num-
ber of alternatives. Simulation optimization

introduces the additional dimension that we
can choose the length of the simulation, but
we may face a budget on the total comput-
ing time. This problem was first addressed
under the name of ‘‘optimal computing bud-
get allocation’’ (OCBA) by Chen [15]. This
idea has subsequently been studied in a
number of papers [16–19]. Chick and Inoue
[20] introduces the LL(B) strategy, which
maximizes the linear loss with measurement
budget B. He and Chick [21] introduce an
OCBA procedure for optimizing the expected
value of a chosen design, using the Bonfer-
roni inequality to approximate the objective
function for a single stage. A common strat-
egy in simulation is to test different parame-
ters using the same set of random numbers to
reduce the variance of the comparisons. Fu
et al. [22] apply the OCBA concept to mea-
surements using common random numbers.

There is also a substantial body of litera-
ture that is often grouped under the heading
of stochastic search, which addresses prob-
lems where we are searching for the best of a
continuous set of parameters. For a thorough
review of this field, see Spall [23]. We note,
however, that this field covers numerous
algorithms such as stochastic approximation
methods that we would not classify as falling
under the heading of optimal learning.

EVALUATING POLICIES

When faced with an array of different learn-
ing policies, we have to address the problem
of evaluating policies. Using the setting of on-
line problems, we start by observing that we
generally cannot compute the expectation in
Equation (1) exactly, but this equation hints
at how we might evaluate a policy in practice.
Let ω index both a prior μ(ω) and a sequence
of observations of W1(ω), W2(ω), . . . , WN(ω),
which depend on the prior, where

Wn
x (ω) = μx(ω) + εn

x (ω).

Recall that Xπ ,n(Sn(ω)) is our decision rule
(policy) for choosing an alternative to test
given our state of knowledge Sn. Given a
sample path ω, a sample realization of a mea-
surement policy would be computed using
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Fπ (ω) =
N∑

n=0

γ nμXπ ,n(Sn(ω))(ω). (10)

Finally, we can repeat this simulation K
times to form a statistical estimate of the
value of a policy

F
π = 1

K

K∑
k=1

N∑
n=0

γ nμXπ ,n(Sn(ωk))(ω
k). (11)

Now we use standard statistical tools to com-
pare policies.

We view this method of evaluating policies
as being fundamentally Bayesian, since we
depend on a prior to determine the set of
truths. However, the policy we are testing
could be frequentist. A frequentist testing
strategy might involve simulating a policy
(Bayesian or frequentist) on a single function,
where we start by assuming that we have
no knowledge of the function (we can treat
it initially as a constant), and where mea-
surements of the function are noisy. While
this strategy is not uncommon, it introduces
dangers. For example, it may be possible to
choose a policy that works well on a particu-
lar function. This problem can be mitigated
by running the algorithm on a family of
functions, but then this is comparable to gen-
erating a truth (the set of truths would be
given by the family of functions).

THE KNOWLEDGE GRADIENT POLICY

A simple idea for guiding information collec-
tion is to choose to measure the alternative
that provides the greatest value from a single
measurement. This idea was first introduced
for ranking and selection problems by Gupta
and Miescke [6] as the (R1, . . . , R1) proce-
dure. It has since been studied in greater
depth as the knowledge gradient by Frazier
and Powell [9] for problems where the mea-
surement noise is known, and by Chick and
Branke [11] under the name of LL(1) (lin-
ear loss with batch size 1) for the case where
the measurement noise is unknown. The idea
was recently applied to on-line problems [24]
for multiarmed bandit problems with both
independent and correlated beliefs.

The ‘‘breakthrough,’’ if it can be called
this, with the idea of the knowledge gradient
is the growing amount of empirical evidence
that it appears to work well, even when com-
peting against optimal policies such as Git-
tins indices for classical multiarmed bandit
problems. This seems surprising, given that
optimal learning problems can be formulated
as dynamic programs. As a general state-
ment, myopic policies often work poorly for
dynamic problems, and the KG policy is effec-
tively a myopic heuristic. The insight that
our numerical work appears to be showing is
that, while this expectation is certainly true
in the context of dynamic problems that arise
in the management of physical resources, it
does not appear to hold true in the context of
learning problems.

The Knowledge Gradient for Off-Line Learning

As before, we assume that all beliefs are nor-
mally distributed with parameters captured
by the state Sn = (μn

x , βn
x )x∈X. Given Sn, which

means, given our beliefs about each choice μn
x ,

the value of our current state of knowledge is
given by

Vn(Sn) = max
x′∈X

μn
x′ .

Now assume that we choose to measure
xn = x. This means that we get to observe
Wn+1

x and update our belief about μx.
We write this updating process using our
transition equation Sn+1(x) = SM(Sn, xn,
Wn+1). This means applying the Bayesian
updating Equations (3) and (4), but only
for choice x. With this new information, the
value of our new state of knowledge Sn+1

would be given by

Vn+1(Sn+1(x)) = max
x′∈X

μn+1
x′ .

At iteration n, however, the observation
Wn+1 is a random variable, which means that
Vn+1(Sn+1(x)) is a random variable. We can
compute the expected value of measuring x as

νKG,n
x = E

[
Vn+1(Sn+1(x)) − Vn(Sn)|Sn

]
. (12)

We refer to ν
KG,n
x as the KG since it is

the marginal value of information from
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Table 1. Calculations Illustrating the Knowledge Gradient Index

Measurement μ σ β σ̃ ζ f (ζ ) ν
KG,n
x

1 20.0 18.00 0.0031 17.999 −0.444 0.215 3.878
2 22.0 12.00 0.0069 11.998 −0.500 0.198 2.373
3 24.0 25.00 0.0016 24.999 −0.160 0.324 8.101
4 26.0 12.00 0.0069 11.998 −0.167 0.321 3.853
5 28.0 16.00 0.0039 15.999 −0.125 0.340 5.432

measuring x. Note that the KG policy not
only captures what we learn about the
mean of a choice but also the change in the
precision of our belief. We write the KG
policy as choosing to measure the alternative
x which has the highest marginal value of
information. We write this policy simply as

XKG,n = arg max
x∈X

νKG,n
x . (13)

We start by computing the variance of the
change in our estimate of μx given our state
of knowledge Sn, given by

σ̃ 2,n
x = Var[μn+1

x − μn
x |Sn].

It is fairly straightforward to show that

σ̃ 2,n
x = σ 2,n

x − σ 2,n+1
x ,

= (σ 2,n
x )

1 + σ 2
ε /σ 2,n

x
. (14)

We then compute the distance between our
current estimate of the value of x, and the
best of the rest, normalized by the number of
standard deviations in the measurement of
the change, given by

ζn
x = −

∣∣∣∣μ
n
x − maxx′ 	=x μn

x′
σ̃n

x

∣∣∣∣ .
Next, we use a standard formula for
E max{0, Z + ζ }, where Z is the standard
normal deviate. This formula is given by

f (ζ ) = ζ�(ζ ) + φ(ζ ),

where �(ζ ) and φ(ζ ) are respectively the
cumulative standard normal distribution
and the standard normal density. Finally,
the KG is given by

νKG,n
x = σ̃n

x f (ζn
x ).

For a more detailed development of these
equations, see [9]. Table 1 provides an
illustration of the calculations for a simple
problem with five alternatives.

On-Line Learning

The ranking and selection problem has a
long history that has evolved completely
independently of the multiarmed bandit
problem. However, we can take the basic
idea of the KG policy and apply it to the
multiarmed bandit problem. We have to find
the expected value of a single measurement.
For on-line problems, we approach this by
assuming that we are going to do a single
step from which we can learn and update
our beliefs about the problem. After that, we
continue making decisions holding our state
of knowledge constant.

If we have an on-line learning problem
where we have only two trials, this means
we can learn from the first trial and use it
in the second trial. The value of measuring
x would simply be ν

KG,n
x , which measures

the improvement in our ability to solve the
problem in the second trial.

Now imagine that we have N trials, where
we have already made n − 1 measurements
and are thinking about what we should do for
the nth measurement. Since this is an on-line
problem, the expected reward we will receive
by measuring x is μn

x . In addition, we get
the benefit of using this information N − n
more times in later decisions. Using this rea-
soning, we can find the on-line knowledge
gradient (OLKG) using

νOLKG,n
x = μn

x + (N − n)νKG,n
x .

If we have an infinite horizon problem (as
with the standard multiarmed bandit prob-
lem) with discount factor γ , the OLKG policy
would be
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νOLKG,n
x = μn

x + γ

1 − γ
νKG,n

x .

Again note the comparisons against the Git-
tins index policy and the interval estimation
policy, both of which use the expected reward
from a single measurement, and a term that
in some way captures the value of infor-
mation on future decisions (although the
OLKG policy is the only one of these poli-
cies where this is explicit). Unlike these other
two policies, on-line KG is not a true index
policy, since ν

KG,n
x depends on a calculation

that requires information from all the other
choices. The Gittins and IE index policies
compute an index that is based purely on
parameters from a particular choice.

This idea is developed with much greater
rigor in Ryzhov et al. [24], which also reports
on comparisons between the OLKG policy
and other policies. It was found that the KG
policy actually outperforms Gittins indices
even when applied to multiarmed bandit
problems (where Gittins is known to be
optimal) when we use the approximation
in Equation (8). KG also outperforms pure
exploitation (i.e., for on-line problems), but it
slightly underperforms interval estimation
when the parameter zα is carefully tuned.
However, it was also found that IE is
sensitive to this tuning, and even slight
deviations from the best value of zα can
produce results that underperform KG.

The S-Curve Problem

An issue with the KG is that the value of
information can be nonconcave. It is not hard
to create problems where a single measure-
ment adds very little value, since the noise in
the observation is too high to change a deci-
sion. We can easily find the value of informa-
tion by computing the KG where the precision
of a measurement x is given by nxβε rather
than just βε . Think of it as making a single
measurement with precision nxβε instead of
βε . An example of a curve where the value of
information is nonconcave is given in Fig. 1.

The issue of the nonconcavity of infor-
mation is well known. Howard [5] demon-
strates the nonconcavity of information in
the context of an auction problem. Radner
and Stiglitz [25] discusses the problem in

considerably greater depth, giving general
conditions under which the value of informa-
tion is not concave. This research has been
extended more recently by Chade and Schlee
[26] and Delara and Gilotte [27] to more gen-
eral settings.

The issue is discussed in Frazier and Pow-
ell [28] in the context of sequential sampling.
This paper proposes a modification of the KG
policy, which is dubbed KG(*). In this policy,
we find the value of nx, which maximizes the
average value of information, as depicted in
Fig. 1. We note that in a budget-constrained
setting, we may not have the budget to do
nx measurements, in which case we have to
consider the value of a smaller number of
measurements. Further, we may not wish to
use our entire budget on a single alterna-
tive, which may eliminate alternatives that
require a large number of measurements to
evaluate.

Correlated Beliefs

The KG policy is able to handle the very
important case of correlated beliefs. This
arises when measuring x may tell us some-
thing about x′. For example, imagine that we
are testing the set of features in a product, or
we want to identify the best set of drugs to put
into a drug treatment, or we want to evaluate
the best set of energy saving technologies in
a house. These are all instances of subset (or
portfolio) selection problems, where a choice
x might be given by

x = (0, 1, 1, 0, 1, 0, 0, 0).

Now consider a choice x′ given by

x′ = (0, 1, 1, 0, 0, 1, 0, 0).

x and x′ share two common members, so
it might be reasonable to expect that, if x
performs better than expected, that x′ will
perform better than expected. Let �0 be our
initial estimate of the covariance in our belief
between different alternatives, where �0 has
|X| rows and columns. Also, let Bn = (�n)−1

be the inverse of the covariance matrix (think
of this as the matrix version of our precision).
Assume that we measure xn = x, observing
Wn+1

x . Recalling that μn is our vector of
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Figure 1. Illustration of
the nonconcavity of infor-
mation, and the maximum
average value that would
be used by the KG(*)
algorithm.

beliefs, let μn+1(x) be the updated vector of
beliefs assuming we measure x = xn, and let
�n+1(x) be the updated matrix of covariances.
The Bayesian formulas for updating means
and covariances, in the presence of correlated
beliefs, are given by

μn+1(x) = �n+1(x)
(
Bnμn + βεWn+1

x ex

)
,

Bn+1(x) = Bn + βεex(ex)T ,

where ex is a column vector of 0s with a 1 in
the element corresponding to alternative x.

For our purposes, there is a more conve-
nient way of expressing the updating of the
vector μn. First, let �̃n(x) be the change in
the covariance matrix for μn due to measur-
ing alternative x, just as σ̃

2,n
x was the change

in the variance of μn
x due to measuring x. This

is given by

�̃n(x) = �n − �n+1(x)

= �nex(ex)T√
�n

xx + λW
.

Next let σ̃n(x) be the column vector of �̃n(x)
corresponding to alternative x, given by

σ̃n(x) := �̃n(x)ex. (15)

Also, let σ̃n
i (x) = (ei)Tσ̃n(x) be the ith compo-

nent of the vector σ̃n(x).

Let Varn[·] = Var[·|Sn] be the variance
given all the measurements up through
iteration n. We observe that we can write

Varn
[
Wn+1

x − μn
x

]
= Varn

[
Wn+1

x

]

= Varn
[
μx + εn+1

x

]

= �n
xx + σ 2

ε ,

where the last step follows from the indepen-
dence between the belief about the variance
of μx conditioned on Sn, and the noise in the
n + 1st measurement εn+1

x . Now let

Zn+1 := (Wn+1 − μn)/
√

Varn [
Wn+1 − μn

]
,

where Varn [
Wn+1 − μn] = �n

xx + σ 2
ε . It is

straightforward to show that Zn+1 is nor-
mally distributed with mean 0 and variance
1. We can now write the updating equation
using

μn+1 = μn + σ̃n(xn)Zn+1. (16)

Also, it is easy to see that VarZn+1 = 1 (since
we constructed it that way).

The KG policy for correlated measure-
ments is computed using
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Figure 2. Regions of z over which differ-
ent choices dominate. Choice 2 is always
dominated.

a1 + b1z

a1 + b1z

Z

a3 + b3z
a2 + b2z

a4 + b4z

c2

c3

h(z)

∼
c1

c1
c2

∼

∼ ∼

a2 + b2z∼ ∼

a3 + b3z∼ ∼

νKG
x = E

[
max

i
μn+1

i | Sn = s, xn = x
]

= E

[
max

i
μn

i + σ̃n
i (xn)Zn+1 | Sn, xn = x

]
,

(17)

where Z is a scalar random normal variate.
Our challenge now is computing this

expectation, which is much harder for
correlated beliefs, but the computation is
very manageable. We start by defining

h(μn, σ̃n(x))

= E

[
max

i
μn

i + σ̃n
i (xn)Zn+1 | Sn, xn = x

]
.

(18)

Substituting Equation (18) into Equation (17)
gives us

XKG(s) = arg max
x

h(μn, σ̃n(x)). (19)

Let h(a, b) = E
(

maxi ai + biZ
)
, where

ai = μn
i , bi = σ̃n

i (xn) and Z is our stan-
dard normal variate. a and b are M (or
|X|)-dimensional vectors of means and σ̃ ’s.
Now sort the elements of the vector b so
that b1 ≤ b2 ≤ . . ., giving us a sequence of
lines with increasing slopes. Looking at the
lines ai + biz and ai+1 + bi+1z, we find they
intersect at

z = ci = ai − ai+1

bi+1 − bi
.

Assume that bi+1 > bi. If ci−1 < ci < ci+1, then
there should be a range for z over which a

particular choice dominates, as depicted in
Fig. 2. It is possible that a choice is always
dominated, which will happen if ci+1 < ci (see
choice 2 in the Fig. 2). If this happens, we
simply drop the choice from the set, producing
a new set of choices with coefficients ãi, b̃i and
intersections c̃i, which satisfy ci−1 < ci < ci+1.

Once we have sorted the slopes and
dropped dominated alternatives, we can
compute Equation (17) using

h(a, b) =
M∑

i=1

(bi+1 − bi)f (−|ci|),

where, as before, f (z) = z�(z) + φ(z). Note
that the summation over alternatives has to
be adjusted to skip any choices i that were
found to be dominated. For a more detailed
presentation, see Frazier et al. [10].

The ability to handle correlated beliefs
is a major generalization, and one which is
not possible with the other heuristic search
rules or Gittins indices. There are numerous
practical problems where these correlations
might be expected to arise. For example, if
we are measuring a continuous function, we
would expect our beliefs about x and x′ to
be correlated in proportion to the distance
between x and x′. Correlated beliefs make it
possible to tackle problems where the mea-
surement budget is potentially much smaller
than the number of potential measurements.

There is a limited but growing literature
on bandit problems (online learning prob-
lems) where there is structure among
the alternatives. Berry and Fristedt [29],
Chapter 2 consider the case of correlated
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beliefs, but do not provide a method to solve
it. Pandey et al. [30] introduces the notion of
dependent arms where alternatives can be
grouped into clusters of arms with similar
behavior. The choice is then reduced to one of
choosing among clusters. Presman and Sonin
[31] introduces the idea of bandit problems
with hidden state variables, which creates
dependencies among different alternatives.
There is a small but growing literature on
problems where correlations are introduced
by assuming an underlying functional form
for the belief [32].

Finally, there are a number of papers that
deal with the important special case of con-
tinuous functions. Ginebra and Clayton [33]
studies ‘‘response surface bandits’’ where the
measurements are continuous; they intro-
duce a simple heuristic (basically an uncer-
tainty bonus similar to Gittins indices) for
learning a surface. Agrawal [34] considers
learning a multidimensional surface, but this
is accomplished by sampling the function at
equally spaced points, and then combining
the results to produce an estimate of the
function using kernel regression [35]. Klein-
berg [35] improves on this by sampling over
evenly spaced intervals, but then applying a
standard bandit algorithm to the resulting
finite set of points (there is no evidence that
correlations are being used in the choice of
what to measure).

Other Applications of the Knowledge Gradient

Now that we have shown that we can use the
KG concept for on-line and off-line problems,
as well as the important class of correlated
beliefs, it is natural to ask the following
question: what is the scope of applications
of the KG for guiding information collection?
We have only begun to explore the poten-
tial range of applications, but some examples
include the following:

• Learning on Graphs. Consider the prob-
lem of making measurements so that
we can better learn the costs on an
uncertain graph. For example, we need
to find the best path for an emergency
response vehicle, and we have to send
people to measure the costs on specific
links of the network to produce the best

solution to our shortest path problem.
Ryzhov and Powell [36] shows that we
can identify the best link to evaluate
using a method that is very similar to
the KG for independent beliefs.

• Drug Discovery. Negoescu et al. [37]
consider the problem of finding the
best molecular compound, through
intelligent sequencing of laboratory
experiments. The research used a
linear regression model to capture
beliefs, reducing a problem with 87,000
possible compounds to one involving
only 200 regression parameters. The
KG policy was able to identify a com-
pound very close to the best in under
100 experiments.

• Subset Selection. Ryzhov and Powell
[38] shows how the KG can be used
to guide the selection of the best
set of energy-saving technologies to
implement in a building, recognizing
that different technologies interact in
different ways for a particular building.

• Optimizing General Surfaces. The KG
for correlated beliefs presented in this
article requires that the covariance
matrix �0 be known. In Mes et al. [39],
the KG concept is adapted to a problem
for optimizing general functions, which
may be nonconcave and which can be
a function of discrete or categorical
variables. The method uses statistical
representation where the function is
approximated using a weighted sum of
estimates at different levels of aggre-
gation. The KG is proven to find the
optimum of the function in the limit,
and appears to show good empirical
convergence.

The KG has other useful theoretical prop-
erties. Frazier and Powell [9] shows that the
KG policy is optimal (for any measurement
budget) if there are only two choices, and that,
for off-line problems, the policy is asymptoti-
cally optimal, which means that in the limit it
will find the best alternative. Of course, many
heuristic policies are asymptotically optimal
(again, this applies only to off-line problems),
but the KG algorithm is the only station-
ary policy that is both myopically optimal
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(which KG is by construction) and asymptot-
ically optimal. This may be a reason why it
appears to offer good empirical performance
for intermediate measurement budgets.

The KG does not always work. It might
consistently work well if the value of informa-
tion is concave in the measurement budget,
but this is not always the case. The marginal
value of information may initially be quite
small, when a single measurement is not
enough to change a decision. But it may
happen that, after some number of measure-
ments, the marginal value starts to grow.
This might arise, for example, if we are try-
ing to find the best hitter for a baseball team.
Watching a hitter for a few at bats teaches us
almost nothing. It can take several hundred
at bats before we can confidently say that
one hitter is better than another. The value
of information can then follow an S-curve,
which means that it can be highly nonconvex
for some applications.

The KG offers the type of general strat-
egy for collecting information that steepest
ascent has offered for a wide range of nonlin-
ear maximization problems. It may not work
best for all applications, but it may provide
a valuable starting point for a wide range of
problems.
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